
s-

Semi-Automated Part-Task Trainer Prototype Development Environment
Rusty Kinnicut and Dick Stottler

Contract Number N68335-98-C-0147

Topic Number: N98-059
Topic Title: Interactive Part-Task Training over Local Area networks (LANS) and the Internet"

Technical POC: Naval Air Systems Command HQ
Attn: William Walker, PMA2052C

Bldg. 2272 - Suite 345
47123 Buse Road Unit IPT

Patuxent River, MD 20670-1547

Final Progress Report

January 20,1999

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited

Stottler Henke Associates, Inc. (SHAI)
1660 So. Amphlett Blvd., Suite 350

San Mateo, CA 94402

Semi-Automated Part-Task Trainer
Prototype Development Environment

Abstract

In this Phase I SBIR research, we proved the feasibility of a semi-automated part-task
trainer (PTT) prototype development environment. In this effort, we set out to address
the shortfalls of traditional PTTs and to introduce new concepts into the PTT prototyping
process. The research developed innovative rapid prototyping techniques for the
development of PTT prototypes. These techniques are leveraged upon the state-of-the-art
software engineering methodologies of component oriented programming (COP),
distributed objects, and visual development environments. This means our environment
will maximize software reuse and support a number of COTS tools. This innovation will
result in a dramatically reduced cost of PTT prototype development and maintenance.
Further, prototypes built with this system will employ intelligent tutoring systems (ITSs)
which tailor training programs based on detailed mental models of the students.
Techniques for defining ITSs using the COP paradigm were designed during this project.
Finally, the prototyping environment enables the development of PTTs which take full
advantage of intranets and the Internet. This enables features such as distributed
simulations, team training, and student monitoring utilities to be integrated into PTT
prototypes. A proof-of-concept prototype was developed to demonstrate the key concepts
and a full operational system was designed.

Stottler Henke Associates, Inc. N98-059: Final Report

Semi-Automated Part-Task Trainer
Prototype Development Environment

Final Report

1. INTRODUCTION 2

1.1 PHASE I OBJECTIVES 3

2. PHASE I INVESTIGATION 4

2.1 CURRENT PART-TASK TRAINERS 4
2.2 RAPID PROTOTYPING TECHNOLOGY SURVEY 6
2.3 INTELLIGENT TUTORING SYSTEMS AND PART-TASK TRAINING 8
2.4 PROOF-OF-CONCEPT PROTOTYPE 9
2.5 PHASE II SYSTEM DESIGN 10

3. PHASE I PROTOTYPE 11

3.1 NAVIGATIONAL PROCEDURES OF AH-1WCDNU 11
3.2 PROOF-OF-CONCEPT RAPID PROTOTYPING 11
3.3 DISTRIBUTED ARCHITECTURE 13
3.4 INTELLIGENT TUTORING SYSTEM 14
3.5 SIMULATION ENVIRONMENT 17
3.6 INSTRUCTOR UTILITY : 18

4. PHASE II SYSTEM DESIGN 18

4.1 OPERATIONAL TRAINER-PDE PROTOTYPE 18
4.2 TRAINER-PDE SYSTEM OVERVIEW 19

4.2.1 Components 20
4.2.2 Palettes 20
4.2.3 Event Model 21
4.2.4 Property Editors 21
4.2.5 ITS Architecture Template and Development Roadmaps 22

4.3 PHASE II SYSTEM ARCHITECTURE 22
4.3.1 Platform Specification 22
4.3.2 Development Environment 22
4.3.3 Component Interaction Diagram 23

4.4 TRAINER-PDE SOFTWARE COMPONENTS 24
4.5 PHASE II SYSTEM DESIGN SUMMARY 27

5. FUTURE WORK & COMMERCIALIZATION 27

5.1 PHASE II TECHNICAL OBJECTIVES 27
5.1.1 Improve Efficiency ofPTT Development and Effectiveness of Resulting PTT. 28

5.2 COMMERCIALIZATION PLANS 29

Stottler Henke Associates, Inc. N98-059: Final Report

1. Introduction
The need of the armed forces to maintain effective readiness at a low cost is as necessary

as ever. Part-task training plays a crucial role in maintaining this readiness. The more resources
these part-task trainers can make use of and the more realistic the simulation environment they
provide, the more effective the part-task trainer will be. The ideal part-task trainer will make
efficient use of state-of-the-art concepts to attain these goals. This is where current part-task
trainers typically fall short. Most part-task trainers are built in a machine-dependent manner for
platforms which can't effectively fulfill the demand placed on them by the part-task trainer. This
machine dependence deprives the part-task trainers of forward compatibility and portability.
Forward compatibility and portability are properties which would enable part-task trainers to
gracefully evolve with technological advancements. Machine dependence also insures expensive
part-task trainer maintenance cost when modifications are made to a training program. That is,
when the task being trained is even slightly modified, the cost of supporting the changes within
the part-task trainer is very high. Further, current part-task trainers fail to take efficient
advantage of the networked computing environments which prevail today. When current part-
task trainers make use of computer networks, they typically ignore security issues. The final
shortfall of traditional part-task trainers is their failure to employ some of the powerful concepts
developed by computer-based training researchers in recent years.

What is needed is a robust part-task trainer prototyping environment which effectively
addresses all of the above concerns. If this environment makes proficient use of an industry
proven component model, a standard distributed object model, and a robust portable
programming language, then the issues stemming from machine dependence will have been
effectively addressed. The environment can be visually driven and distributed over a local area
network (LAN) or a wide area network (WAN) securely. The environment will be sufficiently
general and extensible, thus supporting the easy integration of many value-added enhancements.
Finally, the integration of a number of computer-based training methods will enable the resultant
part-task trainers to tackle new classes of training tasks not previously considered for part-task
training.

The Phase I research set out to address the concerns with current part-task trainers and to
develop a new concept for part-task trainer prototyping. The new concept for part-task trainer
development is the Semi-Automated Part-Task Trainer Prototyping Environment, Trainer-PDE.
Trainer-PDE leverages the use of emerging, industry proven technologies, from the object
oriented community to facilitate the rapid prototyping of part-task trainers. These industry
proven technologies allow for Trainer-PDE to make efficient use of relatively low-cost
Commercial-Off-The-Shelf (COTS) software, reusable software components, and open
standards. Additionally, support for Intelligent Tutoring Systems (ITS) which cater training
programs to individual students, plays a significant role in the Trainer-PDE concept. Intelligent
tutoring systems enable the part-task trainer to tackle more cognitive training tasks than the
traditional part-task trainer. Intelligent tutoring systems can also often make up for shortfalls in
the realism of low fidelity simulation environments. The Trainer-PDE system will result in the
ability to efficiently build high quality part-task trainers which take advantage of modern
computer networks and overcome the limitations of traditional Part-Task Trainers. The effective
use of emerging technologies addresses the development issues of part-task trainer prototyping
and the use of intelligent tutoring systems enables part-task trainers to tackle new classes of
training. In summary, an end Trainer-PDE system will enable the development of highly
effective part-task trainers at a low cost.

The next sub-section (1.1) outlines the technical objectives of the Phase I research;
section 2 discusses the Phase I research activities; section 3 presents the proof-of-concept
prototype; section 4 presents the Phase II system design; and section 5 describes the future of

Stottler Henke Associates, Inc. N98-059: Final Report

this project, including Phase II objectives and eventual Phase III commercialization. The
appendix provides screen shots and examples from the Phase I proof-of-concept prototype.

1.1 Phase I Objectives

There were six major technical objectives of the Phase I effort. Each of these Phase I
goals were accomplished.

A. Automate part-task trainer prototype design and development.

Our primary task for the Phase I was to develop a concept to automate or semi-automate
part-task trainer prototype design and development. The hypothesis is that by taking advantage
of the similarities between various part-task trainers, portions of the part-task trainer prototyping
process will be automated. The other objectives for this Phase I were essentially sub-objectives
towards the achievement of this goal. A comprehensive understanding of current training
environments was required to determine similarities and differences. Identification of key
emergent technologies was required to determine how exactly these similarities and differences
could be exploited. The feasibility study of various computer-based training (CBT) paradigms
was necessary to push the envelope of tasks applicable to part-task training. This study also
examined the hypothesis that the effective use of CBT paradigms will allow effective part-task
trainers to be built on less expensive, low fidelity hardware (e.g., a ruggadized laptop). A proof-
of-concept prototype was required to prove the feasibility of Trainer-PDE and to clearly
demonstrate the concepts involved. Finally, these objectives are combined and put forth in the
formal system design of a Phase II Trainer-PDE operational prototype.

B. Obtain a comprehensive understanding of part-task trainer prototype development.

This objective was the priority early in the Phase I research. The success of the other
Phase I objectives were highly dependent on obtaining a comprehensive understanding of part-
task trainers and part-task trainer prototype development. This objective involved identifying
the types of tasks currently trained using part-task trainers. The objective also included a study
into the shortfalls of these traditional part-task trainers. This study included both shortfalls as far
as the technological concepts traditional part-task trainers employ, as well as the shortfalls in the
traditional part-task trainers effectiveness as training tools. After these shortfalls were identified,
objectives C and D sought to address them.

C. Identify the appropriate state-of-the-art products and techniques which will fulfill
the security, distribution, portability, and extensibility requirements.

This objective started early in the Phase I and continued throughout the research effort.
The success of this objective was necessary to prove the feasibility of a rapid prototyping
environment for part-task trainer development as well as the benefits of distributed part-task
trainers over a LAN or WAN - two core concepts of the Trainer-PDE system. Early on we
recognized how recent achievements in software reuse, open standards, and visual development
environments were resulting in software engineering tools which blurred the lines between the
traditional software development cycles. By successfully designing a system for part-task trainer
prototyping which emphasized these state-of-the-art software engineering technologies, we will
effectively produce a paradigm for the rapid prototyping of part-task trainers. We also
recognized how this new development methodology will effectively address the majority of
concerns which plague traditional part-task trainer development and maintenance. That is, the
same techniques which enable rapid prototyping also increase the portability and maintenance of
the end part-task trainer prototypes.

Stottler Henke Associates, Inc. N98-059: Final Report

D. Prove the feasibility of rule-based, scenario-based, and simulation-based computer
training paradigms.

This objective was pursued after the thorough study of current part-task trainers was
completed. The primary goal was to integrate the concepts of intelligent tutoring systems and
student modeling with part-task training. Stottler Henke Associates, Inc. has a significant
amount of experience applying intelligent tutoring systems to real world problems. Our aim was
to use this practical experience to apply ITSs to the domain of part-task training. The success of
an intelligent tutoring system depends heavily upon the ability to build an accurate mental model
of the student and then catering the training program based on this mental model. Techniques
were developed for describing these mental models within a visual environment. Mechanisms
were developed to enable the ITS to monitor a student's performance within a simulation, gauge
the student's understanding of principles, and specialize the training program based on these
factors. These techniques were designed to work with the rapid prototyping methodologies
identified by objective B.

E. Develop a proof-of-concept prototype.

In order to test our theories, and as a means of demonstrating the success of our work, a
proof-of-concept prototype was developed. The prototype touched on each of the principles
relevant to the success of this project and served as a mechanism for relaying these concepts to
others. The prototype proved invaluable when demonstrated to some personnel of the HMT-303
helicopter training school at Camp Pendleton. The feedback we received verified the direction
of our project and re-affirmed the importance of our chosen objectives. Additionally, the
development of the prototype served as a testbed for experimenting with the various software
engineering technologies and training concepts involved. This experimentation proved very
useful when designing the Phase II system architecture. A detailed overview of the proof-of-
concept prototype is provided in section 3.

F. Design architecture of full-scale, semi-automated, part-task trainer prototype
authoring environment.

The successful completion of the other objectives was a requirement for the design of the
Phase II system. This objective was the final objective completed in the Phase I .effort. A
complete system design incorporating state-of-the-art rapid prototyping concepts and the
integration of intelligent tutoring systems with part-task training was completed. A detailed
overview of the system design is presented in section 4.

2. Phase I Investigation
In order to accomplish the technical objectives discussed in section one, Stottler Henke

Associates, Inc. embarked upon a series of research activities along the various related tracks.
This section outlines this experience and presents the results of this investigation. The following
two sections (sections 3 and 4) will describe in detail the two major products of the Phase I
research, the Phase I proof-of-concept prototype and the Phase II system design.

2.1 Current Part-Task Trainers

During Phase I, we investigated the current state of part-task trainers and part-task
trainer development. We struggled for some time trying to pinpoint how exactly part-task
trainers were currently developed and for which specific tasks they were used. We knew that an
important requirement of this project is that the part-task trainers built with Trainer-PDE operate
within highly portable, ruggadized laptops as well as desktop machines. This requirement
imposed certain restrictions on the fidelity of the simulation environments we could develop for
our part-task trainers. From the initial investigation of part-task trainers, which involved a

Stottler Henke Associates, Inc. N98-059: Final Report

literature search as well as phone interviews with part-task trainer developers, we learned that the
term part-task trainer is used for a variety of vastly different training tools. These training tools
included nearly everything from full blown 6 degrees of motion simulators to small-scale models
of devices to virtual mockups of instrument panels on computer screens. This variety initially
made it difficult for us to pinpoint our goals. However, with subsequent trips to the Naval Air
Station in Patuxent River and then to the helicopter training school in Camp Pendleton, we were
able to gain a firm grasp of the target domain and identify a real world need for a Trainer-PDE
system. This accomplishment was a major milestone in the Phase I research. Further, the
connections we established during this research track offer a tremendous benefit to future
research by generating potential Trainer-PDE prototype users and access to instructors.

The COTR guided us towards the H-l training community for evaluating current part-
task trainers and for identifying potential target users of an end Trainer-PDE system. The pilot
seat of the AH-1W Cobra attack helicopter is perhaps one of the busiest seats in the armed
forces. It is estimated that the pilot of the AH-1W must handle 1.7 times the equipment of a
typical Navy pilot. The cockpit is filled with a myriad of loosely coupled navigational
equipment, communication devices, sensors, and weapon systems. The pilot must maintain
knowledge of all of these devices while piloting the helicopter. Most all of these individual
devices are suitable target domains for part-task trainers. However, because traditional part-task
trainers are expensive, there are very few part-task trainers for these devices available. Further,
the flight students and instructors have reported serious flaws in the part-task trainers currently
available. They have all but dismissed their current part-task trainers as useless. During this
investigation, we worked with several instructors and identified several flaws in current part-task
trainers and identified the properties which would make these part-task trainers effective. We
believe Trainer-PDE part-task trainers will successfully address these flaws. Most of this work
took place at the helicopter training school, HMT-303, in Camp Pendleton.

A principle problem found with current part-task trainers is that there is very little, if
any, feedback offered to the trainee. This makes the part-task trainers very uninteresting to use.
As a result, many of the part-task trainers we looked at are not used very often, if they are used at
all. The instructors and students we spoke with recognized that if some sort of engaging
multimedia feedback were given to the students, then the part-task trainers would be infinitely
more useful. A second major flaw is related to the fact that these part-task trainers were
developed in a highly machine dependent manner. Occasionally, the software of the actual
devices within the helicopters change. When this happens, the part-task trainers model of the
device is not usually updated to reflect these changes. This means that the part-task trainers do
not behave the same as the devices they are designed to train. It is clear how this can be
problematic.

After the more general survey of the part-task trainers at HMT-303, we moved forward
and focused in on the navigational functions of the Control Display Navigation Unit (CDNU) of
the AH-1W. This particular device was chosen because, though HMT-303 already had part-task
trainers for this device, they are not very useful and are barely used by the students. This
provided an opportunity for us to demonstrate how a useful part-task trainer can be built for this
device. The part-task trainer must overcome the limitations of the current CDNU part-task
trainer. Namely, it must engage the user and it must be easy to modify such that it can stay up to
date with changes made to flight software. Further challenges included demonstrating the
benefits of delivering part-task trainers over a computer network as well as demonstrating the
benefits of the use of student modeling and intelligent tutoring systems within part-task trainers.
A second reason this device was chosen to focus our research was because we felt that by
focusing only on certain navigational procedures it could be scaled nicely to fit a two-month
proof-of-concept prototype development effort. Also, we recognized that the knowledge learned

Stottler Henke Associates, Inc. N98-059: Final Report

from this phase I effort could be directly applied to the Phase II development of an operational
prototype which covered all navigation and communication procedures of the CDNU.

After performing this evaluation of current part-task trainers and part-task trainer
prototype development, we moved forward to determine exactly how emerging technologies for
rapid prototyping and intelligent tutoring systems could effectively address the problems of
traditional part-task trainers. The feasibility of the developed methods were then demonstrated
in a proof-of-concept prototype and documented in the design of an operational rapid
prototyping environment for part-task trainer development.

2.2 Rapid Prototyping Technology Survey

During Phase I, we performed a survey of emerging technologies for rapid prototyping
and, more specifically, rapid, prototyping for part-task trainers distributed over computer
networks. A general investigation of various emergent technologies was performed early in the
project. This initial survey was kept general because we were still gathering knowledge on
current part-task trainers to enable us to focus our research. After more knowledge was gained
on part-task trainers, and especially after the selection of the CDNU as a suitable domain for
part-task training, we began to focus our research. The types of relevant technologies examined
included Computer Aided Software Engineering (CASE) tools, Component Oriented
Programming (COP) methodologies and environments, distributed object model methodologies
and implementations, portable programming languages, secure communications protocols, and
various application programming interfaces (API) for building interactive simulations. In
addition to this investigation of development environments and utilities, we also examined the
literature describing these technologies as well as rapid applications development (RAD) in
general. The objective of this survey was to identify how these environments could be used to
develop a rapid prototyping environment capable of overcoming the shortfalls of current part-
task trainer prototyping.

The hypothesis which initiated this research is that these new technological
advancements in software development are blurring the lines between traditional development
cycles. Object oriented analysis and design tools such as Rationale Rose and Advance Software
GDPro currently employ the formal object modeling language, UML (Universal Modeling
Language). These object modeling tools can be used to generate source code from UML object
models or generate UML object models from source code. This type of reverse engineering
resembles a step towards bridging the gap between the design and implementation phases of
software development.

Component oriented programming is a refinement of object oriented programming,
which defines an open standard interface for software objects, or components. Because this
interface conforms to an open standard, the methods and properties of the objects (or
components) can be realized at runtime. The importance of this is that it enables instances of the
components to be manipulated and defined at runtime. The capability to manipulate instances of
components at runtime enables components to be used within a visual development environment
to build applications. Further, it greatly enhances the reusability of the software components.
Software reusability is debatably one of the false promises of the early object oriented
movement. COP makes reusability a reality. The ability to visually manipulate components
within a COTS tool in order to build software" applications is another step towards bridging the
gap between the architectural design and implementation Phase of software development. The
property that components can be manipulated as runtime is a step towards bridging the gap
between the implementation and testing phases of software development.

However, during our survey we failed to find a CASE analysis and design tool capable
of generating and reverse engineering code which conformed to a standard component model.

Stottler Henke Associates, Inc. N98-059: Final Report

The development of such a tool would enable a link between the analysis, functional design,
architectural design, implementation, and testing phases of software engineering. However, as
all of these standards and utilities are still maturing, such leaps are not yet possible. A utility to
bridge these stages was considered for development, however, it was decided that this would be
outside of the scope of this project. Because the technology was more mature and more directly
related to part-task trainer prototyping, we made the decision to focus on component oriented
programming and COTS visual development environments. An additional reason to focus on
these technologies is because they are closely related to another area of interest of this Phase I -
distributed object models.

Component oriented programming has received a huge amount of attention over the past
year. The introduction of the JavaBeans component model is agreed by many to be the most
significant event in the language's history and is expected to be the catalyst that moves Java
usefulness beyond simple web-based applications. We have already seen this, to some degree.
Many serious Java applications have been developed over the past year. The number of
commercial-off-the-shelf software which support the development and use of the JavaBeans
components is further evidence of industry interest. At the time this investigation was
performed, many of these tools were still in their early stages of maturity. IBM's Visual Age for
Java version 2.0 was selected for the implementation of the proof-of-concept prototype for
several reasons. These reasons include the fact that the JavaBeans component model is relatively
easy to learn, IBM's tool was determined to be more stable than many others evaluated, and Java
as a programming language works well within a networked environment.

Though the JavaBeans component model was chosen for the Phase I research, there are
several other major component models in use today. A re-evaluation of JavaBeans and other
component models should be performed during the Phase II. Each component model has
different advantages and disadvantages when compared to one another. The objective of the
Phase I survey was to determine the feasibility of using component oriented programming for the
rapid prototyping of part-task trainers, not to determine which component model was the best. In
short, JavaBeans has the advantage of being widely supported, mostly platform independent, and
possess the ability to work very well in a networked environment. Issues regarding the
efficiency of Java are being addressed by just-in-time (JIT) compilers; however, there are still
some concerns. Microsoft's distributed component object model (DCOM) has the advantage of
being highly efficient and easy to use when used within other Microsoft products and for the
development of applications for the Microsoft operating systems. The negative side includes a
high learning curve for building new components and a serious lack of portability. The Common
Object Request Broker Architecture (CORBA) effectively defines a component model of its
own. CORBA is both language and system-independent and boasts a highly robust distributed
object model. However, to date, CORBA as a component oriented programming model is not
widely supported. CORBA also suffers from being less efficient than DCOM and a fairly
significant learning curve. COTS Tools to address these issues are expected to emerge over the
next couple of years.

Another major technology surveyed included distributed object models. The three major
distributed object models examined include CORBA, DCOM, and Java Remote Method
Invocation (JavaRMI). The pros and cons of these distributed object models are roughly the
same as the corresponding component models. One difference, however, is that CORBA as a
distributed object architecture is probably the most robust and widely supported of the three.
JavaRMI has the advantage of an easy learning curve, but disadvantage of efficiency. DCOM
has the advantage of efficiency, but disadvantage of platform dependence. It is important to
recognize that all three of these distributed object models can work together quite well through
the use of bridges. Bridges are tools which link one distributed or component object model to
another. This means we don't necessarily have to tie ourselves to one distributed object model.

Stottler Henke Associates. Inc. N98-059: Final Report

For the Phase I prototype, JavaRMI was chosen to demonstrate the advantages of a
distributed part-task trainer over a LAN or WAN. This choice was made primarily because
JavaRMI is probably the easiest methodology to use and this made it appropriate for use in a
two-month development effort. For a Phase II operational prototype, however, the robustness of
CORBA may be desirable. CORBA and the JavaBeans object model work very well together.
In fact, it is anticipated that CORBA support will be adopted into the Java language specification
in the near future. As such, the use of JavaBeans and CORBA may be wise implementation
choices for the Phase II. Nonetheless, this issue will be revisited in the design refinement stages
of a Phase II effort.

2.3 Intelligent Tutoring Systems and Part-Task Training

During Phase I, we developed techniques for enhancing the effectiveness of part-task
trainers, through the use of an intelligent tutoring system. Intelligent Tutoring Systems track the
mental models of students and specialize the training program based on this knowledge. The
general flow of information within an intelligent tutoring system is depicted in Figure 1.

Scenario,
Selection

Interactive
Simulation

Peforniance
Evaluatiönllllsi

Scenario
.Case Base

Remediation
Case Base

Remediation
Activities '

Figure 1. Information Flow in an Intelligent Tutoring System

The data structures shown in the boxes with rounded corners include a scenario case-
base, student model, and remediation case-base. The student model maintains a hierarchy of
principles along with a rating of the students understanding of each principle. The scenario case-
base maintains a database of scenarios indexed by the principles they help present. The
remediation case-base maintains a database of remediation activities also indexed by the
principles they present. The scenario selection module uses the student model and case-based
reasoning to select an appropriate scenario from the scenario case-base. The student is then
presented the scenario within an interactive simulation. After the student performs the scenario
within the simulation, the student's performance is evaluated and his or her student model is
updated based on the principles achieved and missed by the student within the scenario. The
remediation selection module then uses the updated student model to select the appropriate
remediation activities from the remediation case base. The student then performs these activities
and his or her student model is once again updated to reflect this activity. If there are still
unlearned principles, the student is brought back to the scenario selection module and enters the
cycle again.

The ITS cycle described has been successfully applied by SHAI to many different types
of training tasks. The challenge of this portion of the Phase I research was to apply it to part-task
training and, more importantly, to enable the creation of ITSs for part-task training within a rapid
prototyping environment. Typically, when we implement an intelligent tutoring system, a large
portion of the time is spent on developing a. principle hierarchy for the domain. A principle
hierarchy is a hierarchical breakdown of the various principles being trained and their
relationships with one another. This principle hierarchy is extremely important because it
determines how the students' mental models are to be built and maintained by the ITS. For this
project, however, the emphasis is on building an authoring tool to facilitate the development of

Stottler Henke Associates, Inc. N98-059: Final Report

intelligent tutoring systems and part-task trainers. So for our research, we developed a very
simple principle hierarchy of the navigational principles of the CDNU. This simple principle
hierarchy provided us with a means of testing different ideas for ITS authoring within the context
of a rapid part-task trainer prototyping environment. Additionally, a simple scenario case base,
sample scenarios and remediation modules were developed. These will be described in more
detail in section 3 of this document, which describes the Phase I prototype.

Using this as a starting point, we were able to develop methods for defining the sample
data within the part-task trainer prototyping environment. The techniques developed are general
enough that they are applicable to virtually any part-task training domain. One or more reusable
software components were designed for each of the modules shown in Figure 1. Each of these
software components can be specialized for different part-task training domains through the use
of custom visual editors. An additional benefit of the approach developed is that it is relatively
easy to re-use the same components used for building the ITS for building utility applications
geared towards the instructors. These utility applications allow instructors with no programming
experience to develop and maintain principle hierarchies, the scenario case base, and the
remediation case base.

A demonstration of these techniques is provided with the presentation of the Phase I
prototype, in section 3. The techniques are formally described with the presentation of the Phase
II system design, in section 4.

2.4 Proof-of-Concept Prototype

During the Phase I, we implemented a proof of concept prototype which demonstrates
the feasibility of a full-scale Trainer-PDE system. This Phase I prototype is presented in detail
in section 3. The principle objectives of the Phase I prototype is to validate the part-task trainer
prototyping techniques developed and to demonstrate the feasibility of a complete Phase II
system. In order to accomplish these goals, we designed the prototype such that it touched on
each of the major issues involved with this project. This included the use of reusable software
components for rapid part-task trainer prototyping, the use of a distributed object model for
distributing the part-task trainer across a LAN or WAN, and the integration of intelligent tutoring
systems with part-task training. The construction of the proof-of-concept prototype enabled us
to obtain two secondary objectives. The proof-of-concept prototype would serve as a suitable
testbed for experimenting with the various concepts involved in this project. This testbed was
particularly useful when experimenting with different ways to integrate an ITS with a part-task
trainer prototype. Additionally, the proof-of-concept prototype served as a valuable tool for
relaying the ideas developed within this project to potential commercial users. An early version
of the prototype was demonstrated to personnel in the computer-based training department of
HMT-303 at Camp Pendleton. In addition to receiving valuable input, we also received
endorsements and potential users for a Phase II effort.

The design and development of the prototype was almost entirely dependent on the
completion of other major Phase I research tasks. These tasks included obtaining a
comprehensive understanding of part-task trainers, completing a survey of rapid prototyping
technologies, and developing techniques for defining an ITS within a visual development
environment. After these tasks were completed, or nearly completed, we spent several months
fine tuning the techniques and proving their feasibility through the Phase I prototype. The Phase
I prototype developed JavaBean components for use within IBM Visual Age for Java version 2.0
to build a part-task trainer prototype for the navigational procedures of the AH-1W CDNU.
JavaRMI was used to demonstrate the benefits of a distributed part-task trainer over a LAN or
WAN. Also demonstrated, was how the use of a distributed object model and component
oriented programming techniques could abstract away many of the complexities of network

Stottler Henke Associates, Inc. N98-059: Final Report

programming. In designing the Phase I prototype, we took into consideration the task of
designing the complete Phase II system which would occur during the last month of Phase I
research. We did this such that our Phase I design would be scaleable to a Phase II system
design, and so the phase I prototype not only demonstrates the feasibility of the end Phase II
system, but it goes further and validates the Phase II system design. The prototype was
completed a month before the end of the project completion date.

The navigational procedures of the AH-1W CDNU was selected as a target for the proof-
of-concept prototype for several reasons. First off, the instructors and personnel at HMT-303
had identified several flaws with their current CDNU part-task trainers. We felt that successfully
addressing these flaws would be a strong way to prove the feasibility of our approach. Other
factors included the fact that the domain of the CDNU is highly scaleable. This feature enabled
us to scale the domain to a size reasonable for a two-month development effort. Additionally,
we found a lot of information about the CDNU within AH-1W NATOPS document. This
important consideration enabled us to build a fairly accurate model of some of the CDNU
functions. Finally, we felt that a CDNU part-task trainer could touch on each of the
technological issues we were interested in demonstrating in this project.

The prototype developed involved a set of JavaBeans components which could be linked
together within a COTS environment to build a CDNU part-task trainer. The part-task trainer
built included an interactive simulation which could be distributed to several simultaneous users
over a network. The part-task trainer also included an intelligent tutoring system which selected
scenarios, monitored student performance, and maintained a student model database. Sample
multimedia remediation screens were also demonstrated. In many cases, custom user interfaces
were developed for the components used to build the part-task trainer prototype. Finally, a
sample instructor utility was developed to demonstrate how an instructor might interact with
students over a network of part-task trainers.

2.5 Phase II System Design

During Phase I, we developed a system design for the Phase II Trainer-PDE system.
This task essentially started when we began the design of the Phase I proof-of-concept prototype.
After completing the implementation of the proof-of-concept prototype, we evolved the Phase I
design into the Phase II System design presented in section 4. Though the task of designing the
Phase II system grew out of the phase I proof-of-concept prototype design, the task was not
entirely straight-forward. The proof-of-concept prototype included a proof-of-concept Trainer-
PDE system as well as a proof-of-concept CDNU part-task trainer. The design of the Phase II
system, however, includes the design of the Trainer-PDE system as well as descriptions as to
how to use it to build part task trainers, in a more general sense. To do this, we had to define a
general framework capable of supporting the majority of part-task trainer prototypes and then
describe how the prototyper should go about using the framework and Trainer-PDE to
implement the part-task trainer. The majority of the less reusable software components will be
in the interactive simulation portions of the part-task trainer prototypes. We also describe how
reusable software components can be designed, implemented, and used by new interactive
simulations. By doing this, the prototype developer will accumulate a library of reusable
components which will aid in the design and development of future part-task trainers. More
importantly, the use of reusable components will considerably facilitate the maintenance of the
part-task trainers developed with Trainer-PDE.

Some principle objectives of creating a full system design of the Phase II system include
providing an effective means of documenting our Phase I work and to give us a head start in a
Phase II development effort. The Phase II system design is presented in section 4.

10

Stottler Henke Associates, Inc. N98-059: Final Report

3. Phase I Prototype
This section provides an overview of the proof-of-concept prototype developed during

the Phase I. The sub-sections refer to screen shots in Appendix A.

3.1 Navigational Procedures of AH-1W CDNU

The target domain of the proof-of-concept prototype is the navigational procedures of
the AH-1W CDNU. The CDNU is a device on the AH-1 W helicopter which is used for a variety
of navigation and communication tasks. The CDNU on the AH-1W is comprised of an alpha-
numeric keypad along with function keys and a small text display area. The CDNU interfaces a
number of navigational and communications equipment including sensors, radios, radar,
TACAN, and more. The pilot navigates through the CDNU data pages and uses the keypad to
enter information. The CDNU then uses this information to configure the appropriate sensors or
radios. The CDNU is also available to display various information about the equipment it
interfaces. For example, a typical task the CDNU is used for, is entering a longitude/latitude
location as a destination along with a desired time of arrival. The CDNU will then compute the
direction and speed the pilot must fly his or her helicopter in order to arrive at that location at
that time.

To limit the scope of our work such that it could be completed in a two-month
development effort, we chose to focus on a limited set of the navigation procedures. Table 1 lists
the navigation procedures we chose to cover in the Phase I proof-of-concept prototype.

Table 1. CDNU Concepts within Proof-of-Concept Prototype

• Waypoint • Exp. Square Pattern
• Target Point • Flight Plans
• Routes • Update Progress
• PIMs • Set Time
• Ladder Pattern • Set Date
• Sector Pattern

One of the reasons why the tasks in Table 1 were selected for this prototype was because
they were believed to be fairly easy to model within a low fidelity simulation. Also, though
these tasks are fairly basic and straight-forward concepts, they represent some of the more
common navigational tasks the CDNU is used for. Therefore, it is very important that a pilot can
routinely perform these sorts of tasks. A principle goal of the part-task trainer is to internalize
these procedures into the AH-1W pilot to the extent that he or she can perform them with very
little conscious effort. This will free up valuable cognitive resources for more of the pressing
tasks of piloting the helicopter and/or assessing the current tactical situation.

To learn all the necessary information regarding the AH-1W CDNU, we primarily
referenced the AH-1 W NATOPS manual. When questions arose, we would direct them to
contacts at HMT-303. This domain for part-task training served us well for the proof-of-concept
prototype. The domain would also be a strong candidate for an operational prototype Phase II
system. A phase II system would train the full suite of CDNU tasks including all navigation and
communication procedures.

3.2 Proof-of-Concept Rapid Prototyping
In order for the Phase I to be successful, it was important to demonstrate how rapid

prototyping techniques could be used for part-task trainer development. In order to demonstrate

11

Stottler Henke Associates, Inc. N98-059: Final Report

this, we developed a proof-of-concept prototyping environment for part-task trainer
development. This proof-of-concept prototyping environment consisted of all the necessary
components to build the scaled CDNU part-task trainer. Essentially, the rapid prototyping
environment was a very scaled down version of what the end Phase II system will look like. The
prototyping environment developed only needed to focus on the components required to build a
CDNU part-task trainer, as opposed to a Phase II system which must be general enough to build
essentially any part-task trainer or, at the very least, provide a significant head start on the
prototyping process.

The Phase I rapid prototyping environment consisted of a set of custom JavaBean
components and a COTS tool which supported the JavaBean object model. The Java
Development Kit version 1.1.6 was used to compile the custom JavaBeans. The components
were organized into palettes and linked to build part-task trainers within IBM VisualAge for
Java. Theoretically, any of the many COTS tools which supported the JavaBean component
model could have been used for this purpose. Some of these other COTS tools include Inprise
Jbuilder 2.0, Sun Java Workshop 2.0, Lotus BeanMachine, Symantic Corp. Visual Cafe for Java,
NetBeans 2.0, and many more.

Within the protoyping environment each component is associated with a set of properties
along with property values, custom property editors, events accepted, and events fired. The
prototype developer selects the desired component from a palette and places it on the canvas.
The prototype developer then specializes the component by assigning values to the components
properties. The task of assigning values to the component instances properties is facilitated by
custom, user friendly, property editors. Communication between the various components is
specified through the event model. Each component specifies the types of events it fires and the
types of events it knows how to handle. The user then uses the COTS tool to graphically draw
connections between components and specify which events traverse these connections.

For example, we developed a platform component to represent the state of a platform,
such as an AH-1W helicopter. We then created an instance of this platform component to
represent the helicopter which the CDNU is located in. We used a property editor to set location,
heading and speed information, amongst other properties for the platform component. The
platform component type fires a platform event every time one of these properties change. A
CDNU component and map component were designed to know how to handle these platform
events. The CDNU component uses the platform event information to update its internal data
and to display information about the platform. The map component uses the platform event
information to redraw the map and illustrate the new location of the platform. To enable these
components to interact as desired, we next drew connections between the instance of the
platform component and the instances of the CDNU and the map components. This connection
specifies that platform events should be passed from the platform component instance to the
CDNU and map component instances. Suppose now that we wish to instantiate another platform
component to represent the aircraft carrier platform the AH-1W should land on. We draw a
connection from this new platform instance to the map display component. The map component
will now display the location of the aircraft carrier as well as the helicopter. Note, however, that
we do not draw a connection from this new platform instance to the CDNU component, because
the CDNU has nothing to do with this platform. This example is illustrated in Figure 2.

12

Stottler Henke Associates, Inc. N98-059: Final Report

MaD
t^^^m)
■ III' ■ III ■ ■■■
\

PE

V
PE PE

\
[Platforml]

>Iatform2]

Figure 2. Event Model Example

The components for building the AH-1W part-task trainer were divided into palettes,
based on their functionality. These palettes included multimedia (TPDE-MM), simulation
(TPDE-SIM), familiarization (TPDE-FAM), intelligent tutoring system (TPDE-ITS), and
networking (TPDE-NET). Additional components were built which were specific to the AH-1W
CDNU. The prototype developer selected components from these palettes and placed them on
the canvas, thus creating an instance of the selected component. The prototype developer then
customized the properties using custom editors, and connected the component instances by
connecting them to the event handlers of other components. This technique was used to build a
scaled down CDNU part-task trainer. This included a distributed simulation environment,
familiarization routines, student model server, simulation server, and an instructor utility. Each
of these processes will be described in detail later in this document.

The rapid prototyping techniques demonstrated with the proof-of-concept prototype
clearly depicted their effectiveness at building part-task trainer prototypes. The methods used
partially automate many of the repetitive steps involved with building new part-task trainers.
The proof-of-concept prototype also demonstrates the high-level of reusability of the software
components developed. Many of the same software components are reused in different aspects
of this project. Finally, the maintainability of part-task trainers developed using these techniques
is illustrated. A change to an actual CDNU device would in most cases only require the
prototype developer to modify the model of the CDNU in one location. All of the ITS and
computer networking code does not need to be touched. Also, if this component is used in
several applications, then all changes to the CDNU can appear instantly in each of these
applications. That is, we don't need to explicitly modify each application which uses the CDNU.
Since all of these applications refer to the same component, all we have to do is modify this
single component.

3.3 Distributed Architecture

One of the desired objectives of the Phase I prototype is to demonstrate the benefits of a
distributed architecture for the part-task trainers. To accomplish this, we employed a simple
distributed object model in the architecture of the Phase I prototype. The principle advantages of
a distributed architecture that we want to illustrate include:

• Distributed Simulation Environment

• Team or Group Training

• Centralized Student Model Database

• Instructor Utilities

The distributed architecture of the Phase I prototype consists of four different types of
processes which can execute on any machine within a network (note, this may be the same

13

Stottler Henke Associates, Inc. N98-059: Final Report

machine or separate machines). A student model server provided a centralized database for
student models, thus allowing mobile users to take full advantage of the student modeling
capability and ITS from any location. A simulation server coordinated a distributed simulation
environment for the students. The part-task trainer clients have the ability to connect to the
simulation server and thus enter the student into the distributed simulation. An instructor utility
demonstrated a second advantage of centralized servers. It enabled instructors to closely monitor
the student's progress, possibly from a remote location. It also demonstrated how an instructor
might intervene with a training sessions, if necessary. Figure 3 below illustrates the operating
context of this architecture.

J351
Instructor ITS Servcr

Utility

Simulation Server

PTT

Figure 3. The distributed operating context of Phase I prototype

The above architecture was implemented using the Java Remote Method Invocation
protocol. Distributed object protocols such as JavaRMI enable the programmer to refer to
remote objects in nearly the same manner as they refer to local objects. This effectively
abstracts many of the details of computer networking from the programmer. It also enabled us to
support the use of distributed application architectures within a rapid prototyping environment.
For example, in order to enable an ITS component instance to use a remote student model server,
the prototype developer simply instantiates an instance of the student model server client
component and connects it to the ITS component instance. The prototype developer doesn't
need to know about the details of the computer network to successfully perform these tasks.

Despite the usefulness of the distributed architecture, it is import to recognize that a
computer network may not always be available. Many of the overseas and ship-based training
facilities have very few, if any, computer networks. To accommodate this, we were sure to
implement the Phase I such that it could operate just as effectively in a standalone environment.

3.4 Intelligent Tutoring System
In addition to illustrating how part-task trainer prototypes could be built using the rapid

prototyping techniques developed, we also wanted to demonstrate the benefits of integrating an
intelligent tutoring system with a part-task trainer. This includes demonstrating how an ITS can
be built using the rapid prototyping techniques developed and how the resultant part-task trainer
will be a more effective training tool. To demonstrate these benefits, we once again turned to the
domain of the AH-1W CDNU. We designed a simple intelligent tutoring system for training the
CDNU navigation principles listed in Table 1. This ITS employed the general architecture
illustrated in Figure 1.

14

Stottler Henke Associates, Inc. N98-059: Final Report

The task of building the proof-of-concept intelligent tutoring system for the navigational
procedures of the CDNU involved several sub-tasks. We needed to develop methods for
building intelligent tutoring systems using the rapid prototyping paradigm. More specifically,
we needed to design and implement reusable software components for building an ITS. We then
needed to use these component oriented programming techniques to build a proof-of-concept
part-task trainer for the CDNU. This involved defining a principle hierarchy, creating the
interactive simulation, creating a scenario case-base, creating a remediation case-base, and
creating remediation activities. Notice how each of these tasks corresponds to a module, or box,
from Figure 1.

One of the most important parts of an ITS is the principle hierarchy. The concepts
selected for this part-task trainer (see Table 1) were relatively straight-forward, so the principle
hierarchy is not too complicated. Also, the focus of this portion of the research was on
integrating intelligent tutoring systems with part-task training. Because of this, more time was
spent on fine tuning techniques and less on the content of the ITS. Nonetheless, a fairly
comprehensive principle hierarchy was developed for this project. This principle hierarchy is
shown within a custom property editor in Figure 4.

iOPiincipleliee jKltf-4jf - Ql

jÄddJPriricipiei

SCDU

JPROGRESS $START

UPDATE SETTIME SETDATE CLRFLPN ■

$FLPN

+RTE +PIM +PTRN +WPT ...+TGT

ROUTE JPIM JPATTERN WAYPOINT TARGET ::

WAYPOINT TARGET LEG SECTOR EXPSQR LADDER

INITIAL

WAYPOINT TARGET ;

OK | Cancel |

Figure 4. Principle Hierarchy for CDNU ITS

^principle hierarchy is used by the ITS to determine the relationships between the
various principles involved in the training domain. In Figure 4, for example, the concept of
Route is dependent upon the understanding of the Waypoint and Target principles. The ITS uses
these relationships to determine which scenario or remediation activity to present to the student
next. That is, if the student understands the waypoint and target principles, then the ITS will
present the student with a scenario involving routes. The student will not be presented with a

15

Stottler Henke Associates, Inc. N98-059: Final Report

scenario involving routes until he or she demonstrates an understanding of the target and
waypoint principles. A student model database keeps track of the principles the student
understands, fails to understand, or has not yet seen. The student model also keeps track of the
scenarios and remediation activities the student has experienced. The instructor utility presented
in section 3.5 provides a mechanism for browsing the student model information stored within
the student model database.

Principle hierarchies can be constructed by instantiating a principle hierarchy component
and then utilizing the custom property editor (shown in Figure A) to build the graph of principles.
Special characters within the various principles have special meanings to the ITS algorithm. For
example, the '$' in the "SFLPN" principle signifies that the SFLPN principle is considered
understood when all of its sub principles are understood. This is as opposed to the "ROUTE"
principle, which is a principle in itself which is also dependent upon the understanding of its sub-
principles. Note, these types of semantics could have been avoided by creating a more intricate
principle data structure. However, these semantics were found to be a useful shortcut for the
short amount of development time for implementing the Phase I prototype. The Phase II system
will be more thorough in its definition of a principle.

The scenarios were selected by comparing the principles the student understands with
the principles exemplified by scenarios within a scenario database. The construction of the
scenario database was done graphically through the use of scenario and task components. The
prototype developer builds a scenario by creating a scenario component and connecting a
network of tasks and sub-tasks to that scenario. Each task includes a description, which
describes the actions which the user must perform; a set of parameters, which are used to
determine if the student successfully performed the task; and a set of principles, which signify
the concepts the task exemplifies. The network of tasks determine the dependency between the
various portions of the scenario. A simple example of a scenario is shown in Figure 5.

addPTRNTask

Figure 5. Simple Scenario from Phase I Prototype

In this scenario, the user must complete the LadderTask, ExpSquareTask, and
SectorTask before he or she will be asked to perform the AddPTRNTask. This is a graphical way
of signifying that the student must understand all of the basic pattern principles before learning
how to add a pattern to a flight plan. These types of statements can be used to build extremely
intricate scenarios and an extensive scenario database. Examples of this are presented in the
Appendix.

Other major portions of the ITS from the Phase I, include a student model database and a
student model server. The student model database provided a centralized location for the storage
of student models. These student models were distributed to the intelligent tutoring systems over
a computer network via the student model server. The student model server enabled a student to
use any part-task trainer connected to the network. Whichever part-task trainer the student logs

16

Stottler Henke Associates, Inc. N98-059: Final Report

on to would access the centralized student model server to acquire up-to-date information about
the student.

The final major ITS component from the proof-of-concept prototype are the
familiarization pages. Familiarization pages are a multimedia presentation of the course
information. These familiarization pages are used as the principle remediation activity suggested
by the ITS. They may be direct multimedia presentations of the principles or they may be plain
text instructions such as review pages 179-200 in the NATOPS manual or go see instructor Y.
Screen shots and examples of these ITS components are presented in the Appendix.

The development of the ITS portion of proof-of-concept prototype was a success. The
experience not only resulted in an effective demonstration tool, but also served as a testbed for
experimenting with the different ITS concepts involved. This experimentation paid off in the
Phase II design of these ITS components.

3.5 Simulation Environment

A significant amount of development time was spent designing and developing the
CDNU simulation environment. This portion of the Phase I prototype is extremely important for
several reasons. First off, the simulation environment is perhaps the most visible portion of the
prototype. Also, the simulation environment is where the majority of the learning will take
place. We had several objectives for the simulation environment of the proof-of-concept
prototype. One objective was to model the CDNU navigation procedures as precisely as possible
within the amount of time available for development. Also, we wanted to provide some forms of
engaging multimedia feedback to the student. This is one of the identified limitations of current
part-task trainers and we wanted to demonstrate that it could be overcome efficiently. Also, we
wanted the simulation environment to be distributed. A distributed simulation will aid in the
students experience by making the simulation more interesting. Also, a distributed simulation
could potentially be used for team training. Finally, the simulation environment needed to have
the ability to run the scenarios defined in the ITS components and provide hooks, such that the
ITS components could monitor the student's performance within the simulation environment.

The simulation environment which was developed, involved a handful of software
components. One component included a software model of the CDNU along with a graphical
mock up of the device. This component enabled the user to perform many of the CDNU
navigational procedures within the simulation environment. In addition to being used within the
simulation environment, this component was used within several familiarization pages. Another
component developed is a multimedia map component. The multimedia map component played
a significant role in the simulation, by engaging the students interest and providing multimedia
feedback to his or her actions. Additionally, the map display component depicts the platforms of
every student within the distributed simulation. This further enhances the user experience and
alludes to how the part-task trainer may be used for team training. Additionally, other simple
instrument components were created to provide access to important information and feedback to
the student. These instruments included speedometer and compass. Controls for entering a
distributed simulation, modifying the simulation's settings, and logging on to the ITS were also
created. Additionally, message window components were created for displaying ITS-specific
messages and for displaying general simulation messages to the student. Finally, several non-
visual components were developed to handle the internal logic of the part-task trainer. These
non-visual components included platforms, a timer for synchronization, modules for doing
navigational computation, and several others. These components were linked in with the ITS
and distributed simulation components. Screen shots of the development environment and the
end part-task trainer can be found in the Appendix.

17

Stottler Henke Associates, Inc. N98-059: Final Report

The simulation environment developed attained its goal of providing a multimedia-rich
model of the CDNU and various feedback components. Because the development of the
simulation environment followed the component oriented programming event model, it was
extremely straight-forward to integrate with the ITS. To integrate the ITS, all we had to do was
enable the ITS to catch the simulation events and determine if they match any of the tasks
currently assigned to the student. The ITS used a message window to pass information to the
student and to request the student to perform specific tasks.

3.6 Instructor Utility

A simple instructor utility was developed to demonstrate one of the advantages of the
distributed architecture. This utility enables instructors to monitor a student's progress from a
remote location. The instructor utility simply connects to the central student model database and
displays up-to-date information about the student's mental model. This information includes a
color coded graph of the principles the student has achieved, missed, or not yet seen, as well as a
list of scenarios the student has seen. Other possible uses of an instructor utility would be to
allow the instructor to modify the principle hierarchy or the student model in some way. Also,
the instructor may suggest which scenario the student should perform next or even interact with
the student in some way through the distributed simulation environment.

The instructor utility developed for the proof-of-concept prototype used many of the
same software components as the CDNU part-task trainer prototype. This property enabled us to
implement the instructor utility in a very short amount of time. Screen shots of the proof-of-
concept instructor utility can be found in the Appendix.

4. Phase II System Design
This section provides an overview of the Phase II Trainer-PDE system design developed

during the Phase I research.

4.1 Operational Trainer-PDE Prototype

The Trainer-PDE system is a rapid prototyping environment for building part-task
trainers. The resultant part-task trainer prototypes implemented with this system will incorporate
intelligent tutoring systems to cater training programs to specific individuals. The environment
and resultant part-task trainer prototypes will take advantage of Internet/intranet technologies to
enhance portability and enable the part-task trainer prototypes to take advantage of computer
networks. Additionally, the system will be capable of running as a standalone system when no
network is available. The prototyping environment will take advantage of open standards,
component models, and commercial-off-the-shelf software. This awareness of software
engineering trends will enable the Trainer-PDE system to maximize reuse and provide an
environment to efficiently prototype part-task trainers.

Many inter-related concepts are involved in the Trainer-PDE system. A thorough
understanding of each of these concepts is required for designing and implementing the Phase II
operational Trainer-PDE prototype. These concepts include:

• Part-Task Trainers (PTT) • ITS Authoring Tools
• Distributed Part-Task Trainers • Component Models
• Rapid Prototyping Environment • Distributed Object Models
• Intelligent Tutoring Systems (ITS) • Visual Programming Environments

Stottler Henke Associates, Inc. N98-059: Final Report

4.2 Trainer-PDE System Overview

This sub-section describes the high-level system overview for the Trainer-PDE system.
This includes the major components of the system and how these components interact to provide
an effective tool for prototyping part-task trainers. The next section will describe the system
architecture at a more detailed level.

The system will be comprised of a set of software components designed for use within a
COTS tool to build part-task trainer prototypes. These components will be divided into palettes
based on their functionality. These palettes of components are imported into the COTS tool and
used by the developer to build part-task trainers. Figure 6 illustrates how these components
might appear within a COTS visual development environment. Notice how this roughly
resembles the screen shots from the Phase I prototype, in the Appendix. This is because the
proof-of-concept prototype followed a very similar design as the one presented here. Essentially,
the proof-of-concept prototype is truly a scaled-down version of Trainer-PDE. This is as
opposed to many proof-of-concept prototypes which simply provide a visual mock-up of what an
end system will look like, without modeling any internal behavior.

Properties

What Value

Palette

CRS |FAM| SIM ITS

[NET j |HW 1 |MM

Canvas

Events (selected obi)
Who Where What

CRS

V J
GGGG
GGGG
GGGG

Figure 6. Rapid Prototyping Environment within a COTS tool

The palette provides an interface for selecting a component to use in the part-task trainer
prototype. These components are placed on a canvas and visually manipulated using custom
properly editors and event editors. Figure 7 illustrates how these component instances might
appear on the canvas. This particular figure represents how the components would be used to
build a part-task trainer for the CDNU. However, other part-task trainers will have a very
similar architecture. The major differences will reside in the simulation components of the part-
task trainers. Properly editors and events provide mechanisms for describing how the
component instances behave and how they will interact with one another. Using the COTS tool
to graphically connect component instances on the canvas will describe the directions that the
events flow. Selecting a connection will bring the user to an event editor where the user can
formally describe the information passed between the components. Selecting an instance of a
component will bring the user to a properly editor where the user can specify values for the
components member variables. The functionality described is provided by COTS tools which
support the component model used to build the Trainer-PDE components. For example, if
JavaBeans is used to implement Trainer-PDE, then IBM Visual Age for Java or Sun Java
Workshop may be used to connect and edit the components. The Trainer-PDE system will be

19

Stottler Henke Associates, Inc. N98-059: Final Report

composed of implementations of components, custom events, custom event editors, and custom
property editors, all geared towards rapid prototyping of part-task trainers. Additionally,
templates and roadmaps will be provided to ease new developers into the rapid prototyping
paradigm.

Government Funded
Equipment'

CourseServer

Enter a PIM for SU1
Enter LATTER pattern
Enter FLT PLN to land on SU1

[Principle Hierarchy!

iPrincipleUierarchy] Scenario Selection

IScenario 1

IScenario 2

Student Model
Database

Automatic Scenario
Generator

Figure 7. Rapid Prototyping Environment

As a final note on Figure 7, notice how the physical layout of the components
represented by shaded boxes, and the event connections represented by arrows, closely resembles
an architectural design for the part-task trainer as it might appear in an object modeling tool such
as Rationale Rose. However, unlike an object modeling tool, these boxes are actual component
instances and with a click of a button, the application can be executed. This is rapid prototyping
- the bridging of the design, implementation, and testing phases of prototype development.

4.2.1 Components

The reusable software component will form the foundation of the Trainer-PDE system.
A software component is defined by a software object which conforms to some standard
interface. This standard interface allows the public member variables and public methods of the
component to be realized at run-time, thus enabling their use within a visual development
environment. There are many standard component models and many COTS visual development
environments which support these component models. The majority of the tasks for
implementing the operational Trainer-PDE prototype will include implementing the sets of
software components for building distributed part-task trainer prototypes, defining the custom
events which enable these components to interact, and developing the custom editors for
defining and manipulating component properties and events.

4.2.2 Palettes

The Trainer-PDE System will be divided into palettes based on the functionality of the
components. These palettes will include the following: course structure (TPDE-CRS), intelligent
tutoring systems (TPDE-ITS), multimedia (TPDE-MM), familiarization (TPDE-FAM),
simulation (TPDE-SIM), network (TPDE-NET), and hardware (TPDE-HW). The components of
these palettes will be edited and linked together within a COTS visual prototyping environment.

20

Stottler Henke Associates, Inc. N98-059: Final Report

Each component is defined by a set of properties, set of events it can handle, and a set of events
that it fires. Custom property editors and custom event editors will be developed to edit the
components properties and events.

4.2.3 Event Model

The components will communicate with one another using custom events. Each
component specifies the types of events it can send and the types of events it fires. Information
will be passed between components through these custom Trainer-PDE events. Components will
respond to these events based on the information they pass. Each component may define its own
type of events and each component can define its own set of event handlers for existing events.

Simulation components, for example, will define several events for passing information
amongst objects within the simulation. Intelligent tutoring system events will be used for
passing information amongst the ITS objects. A simulation event titled task event will be fired
every time the student performs some task within the simulation. The task event will pass along
information about the task in its parameters. The task type waypoint_entered and the parameters
lattitudejc and longitude_y may be passed as the task parameters. The ITS component instance
will be specified to catch these events. When these events are caught by the ITS component, the
ITS component will check to see if they match a current task assigned to the student and whether
the student performed the task correctly. This information will then be used to update the
student model.

There are many other examples of how events will be used. Some of these include a
timer event, which will fired by a clock component instance every so many milliseconds, a
platform event, which will be fired by the platform component every time the platforms state
changes, an update distributed simulation event, which will be fired by the distributed simulation
server component every time the distributed simulation needs to be updated, and many more.

The use of an event model to connect components together is a very robust mechanism
for defining component interaction. The implementation of each component can change its
internal structure without having to explicitly update the components it interacts with.
Components catch and handle events and components throw events; there is no direct connection
between the components. One does not even need to know the properties or methods that the
components implement to use the components. This significant specialization of the object
oriented paradigm is a key property for rapid prototyping environments such as Trainer-PDE.

4.2.4 Property Editors

Each component is defined by its properties and the events it fires and handles. To use
object oriented terminology, component properties are essentially the public member variables of
software components. These properties will be defined by the prototype developer through
standard and/or custom property editors. Standard property editors are editors defined in the
component model standard and implemented in the COTS tool that supports that standard.
These standard property editors are appropriate for defining simple data types such as strings or
integers. More complicated data structures will be defined using a custom property editor which
is developed specifically for that data structure. A significant task in the development of the
Phase II system will be designing and implementing these custom property editors. The careful
design of the user interface for these custom property editors will enhance the visual
development capabilities of the rapid prototyping environment. In cases where the property is a
simple data type, then a default property editor will be fine. However, if the data type is a graph
or something more complicated, then a custom property editor should be used. Figure 4 is a
screen shot of a property editor from the phase I prototype. This property editor is used to define

21

Stottler Henke Associates, Inc. N98-059: Final Report

intricate principle relationships and thus, capture domain knowledge for an intelligent tutoring
system.

4.2.5 ITS Architecture Template and Development Roadmaps

Because most ITS enhanced part-task trainer prototypes developed with Trainer-PDE
will have a similar architectural design, templates and road maps will be provided to facilitate
the prototyping process. Templates will lay the foundation for the prototype by providing the
base set of components and event connections that are common to the type of prototype under
development. A roadmap will be provided along with the template. This roadmap will describe
how to edit the property values of the components and subsequent steps to proceed with the
prototype development. The template will closely resemble Figure 7 when viewed within the
supported COTS tools. Because templates are not defined in most object models, it is likely that
the templates will have to be developed for each COTS tool we wish to directly support. This,
however, will not be a significant task. The challenging task will be implementing the
components, events, and editors to be used within the templates. Documents for building these
templates within new COTS tools will be provided, in case the chosen environment is not
supported.

4.3 Phase II System Architecture
This section describes a detailed design for the part-task trainer rapid prototype

development environment.

4.3.1 Platform Specification

There are several platform requirements for this system. The part-task trainer prototypes
will run on a number of platforms in a standalone manner or across the Internet or an intranet.
The part-task trainer rapid prototyping environment will run at least on a Windows 95/98/NT
platform, but should be trivial to port to other platforms. The environment will be a COTS tool
making use of the components this document describes. If a platform-independent component
model is chosen (see next section) then the rapid prototyping environment may be used on
several supporting platforms.

4.3.2 Development Environment

The system will be built using an open standard component model such as JavaBeans,
the Common Object Request Broker Architecture, or the Distributed Common Object Model.
By following an open standard, our system may be integrated with many existing COTS visual
development environments which support the chosen component model. Additionally, there are
many tools which allow these component models to work together. The decision as to which
component model to choose for system development is an important one, however, it is also
important to remember that different component models can work together and it is important to
remember that one does not need to limit himself to just one. Nonetheless, the more care taken
in selecting the component model, the more powerful the resultant system will be.

The current recommendation would be to use the JavaBeans component model in
concert with the CORBA distributed object model. Java Beans is the most widely supported
component model and works very well with Internet/intranet applications. However, despite
recent advances, there are still some questions regarding efficiency to be answered. These
should be evaluated early in the Phase II. Using CORBA as a distributed object model is one
way of possibly addressing these issues. CORBA is a platform and language-independent object
model and as such, more efficient languages may be used for objects which require the
efficiency of a lower level language, such as C++. Additionally, the use of CORBA with Java is

22

Stottler Henke Associates, Inc. N98-059: Final Report

gaining a lot of industry momentum. Already, tools exist which facilitate the use of these two
concepts together. Furthermore, CORBA has been selected by Sun Microsystems, the
maintainers of the Java programming language, as the underlying distributed object model to be
used within the JDK version 1.2. This will further insure the longevity of these two standards.
However, things change very rapidly in this industry and these issues should be revisited come
implementation of the system. The main advantage of DCOM, currently, is that it is slightly
more efficient than CORBA and JavaRMI. The main disadvantage is that there is a higher
learning curve involved and there is very little platform portability.

4.3.3 Component Interaction Diagram

Other ITS Clients J

FAM Courses

SIM Courses

H CourseServer

[Other Simulations

ft

J'
Simulation
Server

Principle Hierarchy 1

Principle Hierarchy 2

Government Funded
Equipment

■■■■ A .,'-,'-;::;:-

Simulation 1

77 .-..■■

Other ITS Clients

Scenario Selection 0r

Scenario
Database

Automatic
Scenario
Generator

V
JStudent DB Server Student Model

Database

Figure 8. Component Interaction Diagram

Figure 8 is a component interaction diagram for a typical part-task trainer prototype
developed using trainer-PDE. The dark gray boxes represent a single process running on some
machine while the labeled boxes represent the software components which define those
processes. Each of these processes may run on a different machine or all on the same machine.
The labeled boxes with rounded corners represent duplicate processes interacting with the same
components. Several ITSs and Simulations may be using the same course, students, and
simulation servers at the same time, for example. The inter-process communication is
illustrated by the arrows. For example, the arrow directed from the Student Database Server
component to the Student Model Database component illustrates that the database server uses the
student model database, but not vice-a-versa. The inter-process communication (IPC) which is
used, works within a distributed system as well as on a standalone machine. This IPC is
facilitated through the adherence to a distributed object model. The diagram (Figure 8) only
depicts two principle hierarchies, however, the system will support an arbitrary number of
principle hierarchies. As a final note, some of these components may actually be made up of
sub-components.

The first question which will likely come to mind is, if all part-task trainer prototypes are
going to follow this architectural design template, why do we need components? Or, for that
matter, why do we need templates? The answer is that each one of these components will be

23

Stottler Henke Associates, Inc. N98-059: Final Report

specialized into one or more part-task trainers or utility applications. When there are several
uses for specialized components, the software may be reused simply by creating new connections
between the components. For example, Figure 9 illustrates several ITS client components
sharing a Principle Hierarchy component.

Principle Hierarchy 1

ITS Client 1 Principle Hierarchy 2
&

ITS Client 2

Figure 9. ITS Clients sharing a principle hierarchy

Templates are useful because even though most part-task trainers developed with this
system will follow a similar design, there will be subtle differences. The templates will provide
a starting point for the part-task trainer prototyping process. For example, the part-task trainer
developer may want to add additional principle hierarchies or reuse components from an earlier
part-task trainer prototype. These types of decisions will be domain-dependent and must be
made by the part-task trainer prototype developer.

4.4 Trainer-PDE Software Components

The development of the components in Figure 8, including the development of custom
property editors, events, and event editors, will be the most significant effort of the Phase II
implementation. A brief description of each of these components follows.

Course Server Component:
The Course Server component is designed to coordinate students' sessions with the Part-

Task Trainer. This component will reside on a centralized server machine and will serve the
appropriate course sections to the part-task trainers as needed. For example, when a user first
uses a part-task trainer, he or she will likely be presented with a course overview section. Once
the student is finished with this section, the Course Server will direct the Part-Task Trainer
Client component to load up an ITS Course section on the material covered.

In effect, the course server will direct the student through a graph of course sections.
This is coordinated by communication between the Part-Task Trainer client, which coordinates
activity on the host machine, and the Course Server component. A sample graph is illustrated in
Figure 10. Each box represents a course section which may be an application, a web page, or a
collection of web pages or applications.

Figure 10. Course Flow Diagram

FAM Course Component
The FAM (or Familiarization) Course components represent sets of familiarization

applications or pages. These components contain information as to how to invoke a
familiarization course section. This may be a web address or execution statements. These

24

Stottler Henke Associates, Inc. N98-059: Final Report

components should also describe the platform requirements for the course section. For example,
the host machine must have Java Runtime 1.1.6 or higher in order to load this course section.
Familiarization course sections are used to present the knowledge to be trained. A sort of
multimedia textbook for the training domain.

SIM Course Components
The SIM (or Simulation) Course components represent sets of simulation applications or

pages. These course sections are very similar to the FAM Course components, but are used to
present simulation course sections as opposed to remediation course sections.

PTT Client Component
The Part-Task Trainer Client component is responsible for coordinating part-task

training activity on a host machine. This component communicates with Course Server
components and loads or executes the appropriate course sections on the client machine. This
component also communicates with currently executing course sections and passes along
relevant information to the course server.

ITS Component
The ITS component encapsulates the intelligent tutoring system algorithm and control

structure. Instances of this component will reference the supporting data structures for the
particular ITS as well as an Interactive Simulation component and Part-Task Trainer Client
component. This component will reference n Principle Hierarchies which maintain the expert
knowledge for the domain. The ITS uses this expert knowledge to build student models and
select appropriate scenarios and remediation activities. The ITS refers to the Student Database
Server component to access and update information about the students. The ITS refers to
Scenario Selection components when it needs to select a scenario for the Student. The ITS will
catch events fired by the Simulation component. The ITS will examine these simulation events
to see if they match current tasks assigned to the student. This is how the ITS will measure the
students performance within the Simulation. Finally, the ITS refers to the Part-Task Trainer
Client component when the student is finished with an ITS session.

Principle Hierarchy Component
Instances of the Principle Hierarchy component are used to maintain the relationships

between the principles for the training domain. This data structure is where the majority of the
expert knowledge is stored. A clever user interface (e.g., Figure 4) will ease the task of building
the expert knowledge. These components are primarily used by ITS components, but may also
be used by instructor tools or other utilities.

Scenario Selection Component
The Scenario Selection component is responsible for selecting an appropriate scenario

based on a student model. This component references Scenario Database components and
Automatic Scenario Generator components. The component is used primarily by ITS
components. The ITS component will request a scenario which emphasizes a set of principles.
The Scenario Selection component will then search the scenario databases and generators that it
references (this may be more than one) and returns the most applicable scenario.

The artificial intelligence technique known as case-based reasoning is used by the
selection component to select the scenario. Case-based reasoning examines a database of
historical problems and solutions, attempts to find a situation which resembles a current
problem, and then attempts the historical solution to the current problem. Case-based reasoning
is a powerful AI methodology which has been successfully applied to intelligent tutoring systems
by SHAI.

25

Stottler Henke Associates, Inc. N98-059: Final Report

Scenario Database Component
The Scenario Database component collects a set of scenarios into a database. These

scenarios are indexed by the principles they emphasize. This component is referenced by the
Scenario Selection component when a new scenario is needed. This component may also be
used by Instructor Utilities to add, edit, or remove scenarios from the database.

Scenario Generator Component
The Scenario Generator component is responsible for automatically generating a

scenario which emphasizes certain principles. This component will be referenced by a Scenario
Selection component and will be called on to generate a scenario when there are no appropriate
scenarios within the scenario database. This component will likely actually be an Interface or
abstract class which will need to be defined when new simulations are created. Interfaces and
Abstract classes are data structures whose interfaces are defined, so other components may
reference them, but with no, or very little logic built into them.

Student Database Server Component
The Student Database Server component is used to provide access to remote student

model databases. This middleware contains the logic for handling requests from ITS Clients,
passing them on to the appropriate databases, and returning or updating the student model
information. Having a centralized student database enables highly mobile students to use any
part-task trainer on a network and the part-task trainer will go to the central location to find the
student model for that student. This component may be used by Instructor Utilities as well as
ITS components.

Student Model Database Component
The Student Model Database component maintains information about student models.

These fields are listed in Table 2. This component may be used by the Student Database Server
to distribute the information to remote intelligent tutoring systems or other utilities. The
component may also be used directly by an intelligent tutoring system or other utility to provide
the information locally.

Table 2. Student Model Database Fields

Student ID Unique identifier for each student
Principles Seen Each principle the student has seen
Principles Achieved Count for achieving each principle
Principles Missed Count for missing each principle
Scenarios Seen List of scenarios seen

Simulation Component
This component provides the interface between the interactive simulation and the ITS, as

well as the interface between the interactive simulation and the distributed simulation server.
The internal components which are used for building simulation environments for part-task
trainers will, in most cases, need to be specialized for different part-task training domains. As
more part-task trainers are built using the Trainer-PDE environment, more multimedia
components will be added to the library. This will ease the process of building new specialized
components for new types of simulations. The Simulation component described here will
provide a standard interface between the custom simulation components and the rest of the part-
task trainer.

Simulation Server
This component will coordinate distributed simulation environments for part-task

trainers. If a student using a part-task trainer wishes to enter a distributed simulation, the local

26

Stottler Henke Associates, Inc. N98-059: Final Report

simulation component will look up this server component. The server component will then
receive all relevant updates from the clients and pass them on to every part-task trainer
participating in the distributed simulation. Simulation servers could also be used to coordinate
team training environments or student/instructor interaction.

In addition to the components listed above, general components for building multimedia
web pages and interactive simulations will be integrated into the environment. There are many
third party tools which provide a rich set of software components for building multimedia
environments. These multimedia environments will provide a lot of the functionality we need
for building interactive simulations and multimedia remediation activities. We will, however,
undoubtedly want to implement our library of multimedia components for building simulations
and remediation screens in addition to reusing these third party components.

4.5 Phase II System Design Summary

The System Design presented will result in a fully operational Trainer-PDE system. In
Phase II, this system will be used to build two part-task trainers for the Navy (see Section 5.1).
The Trainer-PDE rapid prototyping techniques are leveraged upon the technologies of distributed
object models and component oriented programming. The Trainer-PDE computer-based training
techniques are leveraged upon the technologies of intelligent tutoring systems, student modeling,
and case-based reasoning. The result of the end Trainer-PDE system will be the ability to
rapidly and efficiently build highly effective and flexible part-task trainers. These part-task
trainers will have the ability to take advantage of network resources, incorporate state-of-the-art
training techniques, and will be much easier to maintain and modify than traditional part-task
trainers.

5. Future Work & Commercialization
This section outlines the future of the Trainer-PDE project and the eventual

commercialization objectives.

5.1 Phase II Technical Objectives
The primary objective of the Phase II effort will be to enhance Navy training and

readiness by developing a system which can efficiently prototype highly effective part-task
trainers. Two domains will be selected and an operational rapid prototyping environment
capable of building fully functional part-task trainer beta prototypes for those two domains, will
be developed. Part-task trainers developed with our Phase II system will integrate Intelligent
Tutoring Systems capable of catering training programs to a specific individual's strengths and
weaknesses. This property will enable part-task trainers to train more effectively and tackle new
classes of training tasks. Additionally, we seek to reduce the cost of part-task trainer prototype
development, delivery, and maintenance. By leveraging the Phase II technology on standard
component models and distributed object models, this objective will be accomplished. This
means emphasizing the interconnected concepts of open standards, software reuse, commercial-
off-the-shelf software, virtual machine languages, and Internet/intranet technologies. Through
the effective use of these concepts, we seek to partially automate the PTT prototyping process
and thus reduce the cost of development and maintenance. Through the effective use of a
distributed object model, part-task trainers developed with the Phase II system will reap the
advantages of running in a networked environment as well as on a standalone system. These
objectives are described in detail below.

The Phase II technical objectives have been endorsed by Major Wenrich of the
Helicopter Training Squadron HMT-303 located in Camp Pendleton, CA. Major Wenrich
coordinates the computer-based training (CBT) facility for the squadron. Our objectives include

27

Stottler Henke Associates, Inc. N98-059: Final Report

a continued relationship with HMT-303 to better insure the quality of our work and the success
of the project.

5.1.1 Improve Efficiency of PTT Development and Effectiveness of Resulting PTT

The Phase I proof-of-concept prototype demonstrated the feasibility of using component
oriented programming to develop a new concept of rapid part-task trainer prototype
development. Reusable software components were developed which could be visually
manipulated within numerous COTS tools to develop part-task trainer prototypes. Techniques
were developed to use this component oriented programming paradigm to build part-task trainers
enriched with ITS concepts. The integration of ITS concepts with part-task trainers enables a
part-task trainer to model a student's understanding of the training domain and to utilize this
knowledge to tailor a training program to individual students. The components developed will
be highly portable and will have the ability to run in a distributed environment, as well as on a
standalone machine. Running in a distributed environment will enable part-task trainers trainees
to interact with one another within a networked simulation, enable instructors to remotely
monitor and interact with a students training environment, and enable the part-task trainers to be
available to highly mobile students and instructors. In Phase II, two fully functional part-task
trainers will be built using the rapid prototyping environment. Below, the sub-goals of this
objective are enumerated.

A. Enhance COP techniques for building interactive simulations, distributed training
environments, multimedia, and ITSs: As part of the Phase II effort, we will extend the
techniques developed in the Phase I for using a component-oriented programming paradigm
for the rapid prototyping of part-task trainers. This primarily involves identifying the key
entities common to this new breed of part-task trainers and defining how they can be
described within a reusable software component. This includes components for supporting
the development of interactive simulations, distributed training environments, multimedia,
and intelligent tutoring systems.

B. Enhance integration of ITS concepts into PTT prototypes: In Phase I, we successfully
demonstrated the use of an Intelligent Tutoring System within a CDNU part-task trainer.
The techniques developed for this task will be extended to support a wide breadth of part-
task training domains. This will primarily involve further investigation into how detailed
mental models of a student's understanding of specific domains can be built and represented
within a part-task trainer.

C. Reduce cost of PTT development: We will implement an operational prototype of a
component-oriented rapid prototyping environment to build two fully functional PTT beta
prototypes. We will use the rapid prototyping techniques developed in Phase I to build the
reusable software components required to implement two fully functional part-task trainers.
By following open standards and emphasizing reusable software, this task will be
accomplished. The rapid prototyping environment will take the form of the developed
software components imported into a supporting COTS tool.

D. Improve the Training and Readiness of Navy personnel in two PTT domains: The
Phase I prototype demonstrated the feasibility to use the developed rapid prototyping
techniques to build an AH-1W CDNU navigation part-task trainer prototype. The Phase II
effort will build on this accomplishment by utilizing these techniques to build two fully
functional part-task trainer prototypes. A need has been expressed for a fully functional AH-
1W CDNU communication and navigation procedure trainer. We will focus on this domain
for the first part-task trainer. Additionally, we will evaluate the need for weapon systems

28

Stottler Henke Associates, Inc. N98-059: Final Report

trainers (WST) within the H-l community and select the second class of part-task trainer to
implement.

E. Enhance accessibility of ITS authoring: It is often desirable to provide ITS authoring
utilities intended for use by instructors with little or no programming experience. These
utilities allow non-programmers to author scenarios and populate knowledge bases for
specific intelligent tutoring systems. We will develop techniques for implementing such
tools using the component-oriented programming paradigm and integrate them into the rapid
prototyping environment. (Phase II option)

5.2 Commercialization Plans
There are numerous commercial outlets for this effort. The Phase II project will leave us

with two fully functional part-task trainer prototypes as well as a rapid prototyping environment
for implementing new part-task trainers. This means we will both have the ability to produce
new part-task trainers at a relatively low cost and we will have a rapid prototyping environment
which can be extended and sold to other part-task trainer developers. Further, the domain of
distributed part-task training over LANs, intranets and the Internet is closely related to many
other training domains. Distance learning, for example, is gaining a lot of momentum in
academic, commercial, and government markets. Our tool could be modified to support those
markets as well as similar markets within the Navy and other DoD branches. Further, the
properties of this SBIR position the effort precisely into our company business plan of
generalizing and marketing our previous work in Intelligent Tutoring Systems. More
specifically, this project provides powerful ITS authoring abilities, particularly for distance
learning systems and distributed simulation environments - two fast growing markets in the
world of computer-based training.

A prime candidate for the described product and services is the Navy. The Navy has a
very real need for effectively training personnel at a lower cost. The Navy would also be
attracted to the distance learning and distributed training environments our part-task trainers will
provide. In phase I, we worked with the H-l helicopter training school, HMT 303, at Camp
Pendleton. The goal is to better understand their training requirements and to determine how our
tool would help them best. We would continue this relationship through a Phase II effort. The
computer-based training coordinator for HMT-303, Major Wenrich, is also interested in
continuing this relationship. By working closely with contacts within the Navy, the beta part-
task trainers will be recognized as a valuable tool to training programs and will be adopted into
Navy training programs. SHAI is currently following a similar track with a Navy Phase II
project involving intelligent tutoring systems for TAO officers. The training tool will soon be
adopted into TAO training at the Surface Warfare Officer School.

The likely commercialization avenue for the Phase II using this model is to generate
enough interest that a Navy fleet instructor initiates a Fleet Operational Needs Statement
(FONS). This FONS then generates a Mission Needs Statement (MNS), which in turn generates
an Operational Requirements Document (ORD), and finally, a Program Objective Memorandum
(POM), and thus a direct funding source. The POM for the project would be for 2004. However,
seed funding through the Presidential Requirement (PR) program of 2003 could help carry the
project through this process after the Phase II is complete.

Another prime route for commercialization is to use the tool to create ITSs for individual
clients and markets. The core ITS concepts and the software components which realize those
concepts can seemlessly be carried across domains. We would be able to use our software
components and workbench to quickly build new classes of intelligent tutoring systems.
Marketing Intelligent Tutoring System creation services is similar to SHAI's core business of

29

Stottler Henke Associates, Inc. N98-059: Final Report

marketing Artificial Intelligence research and development services. SHAI has been very
successful in marketing such services.

Marketing Intelligent Tutoring Systems to individual, vertical marketing segments will
be highly dependent on the markets involved. For example, SHAI has developed relationships
with several educational software companies and text book publishers. This could be used in
preparation for intelligent tutoring systems aimed at high school and remedial college math
(algebra, geometry, trigonometry, and calculus) and science (physics, chemistry, and
astrophysics). Commercial aviation and corporate training are two prime potential markets for
this research. Additionally, SHAI has solid contact with customers in the military likely to
purchase developed ITSs and PTTs, including the Dismounted Infantry School at Fort Benning,
the Armored Infantry School at Fort Knox, the AEGIS Program Office, the AEGIS Training
Center, AEGIS Training Group, Surface Warfare Officer School, Army STRICOM, and
SPAWAR. All of these angles will be explored in detail during the Phase II.

30

Stottler Henke Associates, Inc. N98-059: Final Report

Appendix A: Screen Shots

This appendix provides a series of screen shots from the Phase I proof-of-concept
prototype. Each of these screen shots relay a different concept presented in the final report.

Part-Task Trainer Rapid Prototyping Environment

The Screen Shot below shows the reusable JavaBeans component from the Phase I
proof-of-concept prototype being utilized within the IBM Visual Java v2.0 to build the AH-1W
CDNU Part-Task Trainer. The portion of the environment which is seen in this screen shot
focuses mainly on the simulation portion of the Part-Task Trainer. Note the component instance
Platform 1 near the bottom of the screen and how it is connected to the map image, CDNU,
speedometer, and compass components. As discussed in the final report, the platform
component fires events every time its state changes. When this happens, all of the connected
components respond to these changes in different ways.
c AHlCOUPTTrastl 14mlp«)o.tiainBn.aMm:du

^ffe^eah £di loots Workspace Wrdow Help

31

Stottler Henke Associates, Inc. N98-059: Final Report

Property Editors

This screen shot is similar to the previous shot. However, in this screen shot the
Principle Tree custom property editor is invoked. The prototype developer uses this property
editor to enter the data for the component instance Principle Hierarchy, highlighted in the lower
left-hand side of the screen.

C AHICUtWITltet V.H H IptfettwsWiMMCdM
;£te fiwn £dt lool» Wakspra Wndow H*

&t&&'j®'&v& *) 3 S'.g-lTi *) 'S \B »JJ: S) ■
l|Net^sJj£ Hierarcty['$Editwuj^ViJU^Compoti(io*i[u BewWoJjg .. ^^.W*"***.

jgB Start [[J #S ^1 gj ^ [j :^J Exploring -:.:.| ^Microsoft... [gjkinnicuttc... | 0Co^enOw..| ^) Workbench | QLog - ||QAH1CP... c&ConlroiFa...| |j <$[$$[& \?:;1;39PM 1

32

Stottler Henke Associates, Inc. N98-059: Final Report

Intelligent Tutoring System Components

This screen shot shows the component instances used in the CDNU part-task trainer to
build the Intelligent Tutoring System. Notice how this roughly resembles the component
interaction diagram from Figure 8. The ITS component contains references to the Student
Database Client component, the Principle Hierarchy component, a Scenario Database
component, and the Simulation. The Simulation component is connected to a Distributed
Simulation Client. The lower half of the diagram shows the scenario database. This scenario
database is defined graphically through a network of tasks and sub-tasks, as described in Section
3.4.

C AH1CDUP1 Inel 1.14 in Ipdo tiainoti ahl«redu

;£*e: fcean £<ft lools Workspace ÜJndowfHetP

I pdhapleHierad^t JipdftfePrindpW-(fei«cfy] selected . "■■

33

Stottler Henke Associates, Inc. N98-059: Final Report

AH-1W CDNU Navigation Part-Task Trainer

This screen shot shows the proof-of-concept AH-1W part-task trainer which was
developed during this Phase I. The top-left corner of the screen shows a graphical mock up of
the CDNU. This CDNU models all of the navigational functions we wish to train. The map on
the top-right corner of the screen provides feedback to the student. The black circle represents
the student's helicopter and the gray circles represent other student helicopters within the
distributed simulation. Other circles resemble other objects such as PIMs or the current
destination. The controls in the lower-left corner are for adjusting simulation settings and
specifying the addresses of the simulation and student database servers. The boxes and lower
right corner present messages to the user. The bottom one displays every task performed by the
student within the simulation. The top one displays messages from the ITS. During this session
the ITS asks the student to "Create a Target Base3 at location North 41 by West 70". The
student correctly performs this task and the ITS responds with "Target task completed" and then
asks the student to create a Waypoint position.

H '.,'- — * '; 1 ■■'■ *; ' CRS '[099] , ■>

FLPB

AUTO SEQ <—
"iTOI

JJEBBF

UE8BF

:';:fBASE3; ■'.

' 1 [

;:'SAVE<-

]

Kl-isaJ
H ;' __■». ';

;. 1 :r B
■r~~v~n|\ i«--1

hlLtd
1 '' V—*'':.: 1 -] |<-^

t ^H
COM NAV FF WFN NTS STAT

1 1 >,2"- :3 A B "■■'C'.. D E F

■ 4 5 • -' 6 G H :.: 1 " J K L

| 7 8 ;9 M N ?o ■ P 0 R

0 ; A;:. S : T V : V W X

CLR ■;«(. - ■ .>
■"-■■

■■'./ IDX Y z
MARK -I. FLPN DIR PROG MAP TGT r"^H

Simulation Settings

Rate: [1

Exit DIs Sim

10.33.1.103 itudent Server IP: | 10.33.1.103

ITS» Create waypoint LOC2 for North 41 defl 30 mln by West 70 deg 3C
1TS> TARGET task completed
ITS> Create target BASE3 at North 41 deg by West 70 deg
ITS» Welcome iane

TASK» FLPN NEWBF BASE3 PIM
TASK» FLPN BASE3 PIM
TASK» PIM H41 5000W0702000 0000/285/50
TASK» PIM N415000W0702000

34

Stottler Henke Associates, Inc. N98-059: Final Report

Student Database Server

This screen shot shows the student database server. This server can be run on any
machine on the network. The ITS of the Part-Task Trainer uses the JavaRMI distributed object
protocol to connect to this server and access and update student model information. To enable
an ITS to make use of a remote server all the prototype developer needs to do is create an
instance of the Student Database Client component and connect it the ITS component, as
demonstrated in the screen shot titled Intelligent Tutoring System Components.

Student DB server started: Tue Jan 19 14: id
Startinq student database server
_ I

Simulation Server

This screen shot is the Simulation Server. Like the Student Database Server, this server
may run on any machine on the network. Students enter the distributed simulation by pressing
the "Enter Dis Sim" button in the lower-left corner of the part-task trainer. This server then
makes sure every part-task trainer in the simulation remains in sync. For this proof-of-concept
prototype, this only means that everyone within the distributed simulation can see one another on
their map displays. However, one can imagine how this could be used for more advanced
applications, such as team coordination training or linking several different types of part-task
trainers together.

Restart Simulation Server

Simulation server started: Tue Jan 19 14:_d
Startina simulation server
4I I

35

Stottler Henke Associates, Inc. N98-059: Final Report

Instructor Utility

This screen shot shows an instructor utility which was developed during the Phase I.
This utility is used by instructors to monitor the students' progress. This instructor utility could
be built in a very short amount of time, because it reuses many of the software components from
the Part-Task Trainer prototype. The instructor may select a student from the box in the upper-
left corner. The browser will then display all the principles the student has achieved and missed
as well as a list of scenarios that the student has been exposed to. The graph on the left is color
coded to graphically illustrate the students understanding of the principles. Red resembles
principles the student has missed every time, green represents principles the student has
achieved, and blue represents the principles the student has not yet been presented. This is a
relatively simple application. One can imagine how it might be extended such that an instructor
could fine-tune the student model or request a particular student be presented a particular
scenario, for example. These extensions would be very straight-forward to add.

UPDATE

HHE

OÖ'OGK

«PROGRESS

+ RTE

ROUTE

1 0.33.1.1 03

fPIM

$PIM ^PATTERN VM«rPO!NT ... TARGET

TARGET LEG SECTOR EXPSQR LADDER

36

<r
* SHAI Stottler Henke Associates, Inc.

1660 S. Amphlett Blvd., Ste. 350
San Mateo, CA 94402
(650) 655-7242
(650) 655-7243 (FAX)
http.V/www. shai. com

Certification of Technical Data Conformity (May 1987)

The Contractor, Stottler Henke Associates, Inc., hereby certifies that, to the best of its knowledge

and belief, the technical data delivered herewith under Contract No. N68335-98-C-0147 is

complete, accurate, and complies with all requirements of the contract.

Signa

Wavne R. King. Jr.
Name - printed

Controller

Title

January 20, 1999

Date

SHAI
Artificial Intelligence Consulting

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
January 20, 1999

3. REPORT TYPE AND DATES COVERED
Final Progress Report

4. TITLE AND SUBTITLE
Semi-Automated Part-Task Trainer Prototype Development Environment

6. AUTHORS
Rusty Kinnicut and Richard Stottler

5. FUNDING NUMBERS

N68335-98-C-0147

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Stottler Henke Associates, Inc.
1660 South Amphlett Blvd., Suite 350
San Mateo, CA 94402

8. PERFORMING ORGANIZATION
REPORT NUMBER

Report #172: Trainer-PDE Final Report

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Naval Air Systems Command HQ - Attn: William Walker, PMA2052C
Bldg. 2272 - Suite 345
47123 Buse Road Unit IPT
Patuxent River, MD 20670-1547

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES
NONE

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

In this Phase I SBIR research, we proved the feasibility of a semi-automated part-task trainer (PTT) prototype development environment:
In this effort, we set out to address the shortfalls of traditional PTTs and to introduce new concepts into the PTT prototyping process. The
research developed innovative rapid prototyping techniques for the development of PTT prototypes. These techniques are leveraged upon
the state-of-the-art software engineering methodologies of component oriented programming (COP), distributed objects, and visual
development environments. This means our environment will maximize software reuse and support a number of COTS tools. This
innovation will result in a dramatically reduced cost of PTT prototype development and maintenance. Further, prototypes built with this
system will employ intelligent tutoring systems (ITSs) which tailor training programs based on detailed mental models of the students.
Techniques for defining ITSs using the COP paradigm were designed during this project. Finally, the prototyping environment enables the
development of PTTs which take full advantage of intranets and the Internet. This enables features such as distributed simulations, team
training, and student monitoring utilities to be integrated into PTT prototypes. A proof-of-concept prototype was developed to demonstrate
the key concepts and a full operational system was designed.

14. SUBJECT TERMS
Part-Task Trainer (PTT) Intelligent Tutoring System (ITS) Artificial Intelligence (Al)

Component Oriented Programming (COP) Simulation Environment Rapid Prototyping

15. NUMBER OF PAGES
38

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UNLIMITED

NSN 7540-01-280-5500
(Rev 2-89)

Computer Generated STANDARD FORM 298

38

